Han Lab Drosophila Transgenic Vectors

UAS vectors:

Name Features Components Comment Depository ID Sequence Reference
pUA 10X UAS version of pUAST-attB 10X UAS; hsp70 promoter/5’UTR; SV40 early polyA attB only Addgene 58372 download Han et al., 2014
pACU original pUAST with attB 5X UAS; hsp70 promoter/5’UTR; SV40 early polyA recommended for low expression Addgene 58373 download Han et al., 2011
pACUH 10X UAS version of pACU 10X UAS; hsp70 promoter/5’UTR; SV40 early polyA recommended for intermediate expression Addgene 58374 download Sapar et al., 2018
pACU2 high expression with HIH cassette 5X UAS; hsp70 promoter/5’UTR; synthetic intron; His2Av polyA possible leaky expression induced by enhancers near the insertion site Addgene 31223 download Han et al., 2011
pIHEU insulated version of pACU2 5X UAS; hsp70 promoter/5’UTR; synthetic intron; His2Av polyA; gypsy insulators recommended for high expression without Gal4-independent leaky expression Addgene 58375 download Han et al., 2011
  1. Except for pUA, all plasmids were constructed in the dual-transformation backbone pAC (attB CaSpeR) that contains attB, P-element, and mini-white.
  2. Expression level: pIHEU ≈ pACU2 > pACUH ≈ pUA > pACU

 

Gateway Destination vectors

Name Purpose Components Comment Depository ID Sequence Reference
pDEST-HemmarR For making enhancer-driven CD4-tdTomato marker hsp70 promoter/5’UTR; zeste intron; CD4-tdTomato CDS; His2Av polyA original Hemmar vector Addgene 31222 download Han et al., 2011
pDEST-HemmarG For making enhancer-driven CD4-tdGFP marker hsp70 promoter/5’UTR; zeste intron; CD4-tdGFP CDS; His2Av polyA original Hemmar vector Addgene 31221 download Han et al., 2011
pDEST-HemmarR2 For making enhancer-driven CD4-tdTomato marker DSCPm; zeste intron; CD4-tdTomato CDS; His2Av polyA Modified Hemmar vector that matches the expression of FlyLight Gal4 constructs better Addgene 112813 download Poe et al., 2018
pDEST-HemmarG2 For making enhancer-driven CD4-tdGFP marker DSCPm; zeste intron; CD4-tdGFP CDS; His2Av polyA Modified Hemmar vector that matches the expression of FlyLight Gal4 constructs better Addgene 112814 download Poe et al., 2018
pDEST-HemmarI2 For making enhancer-driven CD4-IFP2.0 marker DSCPm; zeste intron; CD4-IFP2.0-T2A-HO1 CDS; His2Av polyA Modified Hemmar vector that matches the expression of FlyLight Gal4 constructs better Addgene 112815 download Poe et al., 2018
pDEST-APIGH For making enhancer-driven Gal4 hsp70 promoter/5’UTR; zeste intron; Gal4 CDS; His2Av polyA Addgene 112804 download Han et al., 2014
pDEST-APIC-Flp1 For making enhancer-driven Flp1 hsp70 promoter/5’UTR; zeste intron; Flp1 CDS; His2Av polyA Flp1 is a high activity Flp with D at AA5 Addgene 112806 download Poe et al., 2017
pDEST-APIC-LexAGAD For making enhancer-driven LexAGAD hsp70 promoter/5’UTR; zeste intron; LexAGAD CDS; His2Av polyA Addgene 112807 download Poe et al., 2017
pDEST-APIC-Cas9 For making enhancer-driven Cas9 hsp70 promoter/5’UTR; zeste intron; Cas9 CDS; His2Av polyA Addgene 121657 download Poe et al., 2018
pDEST-APLO For making 13X LexAop2-driven transgene 13X LexAop2; hsp70 promoter/5’UTR; synthetic intron; His2Av polyA Addgene 112805 download Poe et al., 2017
  1. All plasmids were constructed in pAIPC (attB P-element insulated CaSpeR), a dual-transformation backbone that contains attB, P-element, mini-white, and two gypsy insulators flanking the transgene unit. All contain ccdB cassette (attR1/attR2) for introducing DNA fragments in entry vectors through Gateway L/R reactions.
  2. DSCPm: modified Drosophila synthetic core promoter based on hsp70 promoter/5’UTR, containing Inr, MTE, DPE, in addition to TATA box

 

CRISPR Reagents

tissue-specific CRISPR cloning steps
Co-CRISPR reporter gRNA

Mosaic Analysis by gRNA-induced Crossing-over (MAGIC)Mosaic Analysis by gRNA-induced Crossing-over (MAGIC)

gRNA cloning vectors for CRISPR-TRiM and MAGIC:

Name Purpose Components Comment Depository ID Sequence Reference
Tissue-specific CRISRPR (CRISPR-TRiM)
pAC-U61-SapI For making dual- and triple-gRNAs with separate U6 promoters; original gRNA scaffold U6:1 promoter; SapI adaptor for cloning inserts by Gibson Assembly; original gRNA scaffold Old generation; not recommended Addgene 112808 download Poe et al., 2018
pTGC-U6.2 PCR template vector to use together with pAC-U61-SapI gRNAcore(original)-U6:2 Addgene 112809 download Poe et al., 2018
pTGC-U6.3 PCR template vector to use together with pAC-U61-SapI gRNAcore(original)-U6:3 Addgene 112810 download Poe et al., 2018
pAC-U63-tgRNA-Rev For making multiplexed gRNAs separated by tRNAGly spacers; gRNA(F+E) scaffold U6:3 promoter; tRNAGly ; SapI adaptor for cloning inserts by Gibson Assembly; gRNA(F+E) scaffold Old generation; not recommended Addgene 112811 download Poe et al., 2018
pMGC

PCR template vector to use together with pAC-U63-tgRNA-Rev, pAC-U63-tgRNA-nlsBFP, or pAC-U63-tgRNA-Gal80

gRNAcore(F+E)-tRNAGly Addgene 112812 download Poe et al., 2018
pTR(EF)-tRNA(Q)

PCR template vector to use together with pAC-U63-tgRNA-Rev, pAC-U63-tgRNA-nlsBFP, or pAC-U63-tgRNA-Gal80

gRNAcore(F+E)-tRNAGln Addgene 170517 download Koreman et al., 2021
pAC-U63-gRNA2.1 For making multiplexed gRNAs separated by tRNAGln spacers; gRNA(2.1) scaffold U6:3 promoter; SapI adaptor for cloning inserts by Gibson Assembly; gRNA(2.1) scaffold Highest efficiency in somatic tissues; recommended for tissue-specific CRISPR Addgene 170512 download Koreman et al., 2021
pAC-U63-QtgRNA2.1-BR For making multiplexed gRNAs with BFP co-CRISPR reporter; also serving as the PCR template vector for cloning in pAC-U63-gRNA2.1 U6:3 promoter; SapI adaptor for cloning inserts by Gibson Assembly; gRNA(2.1) scaffold; tRNAGln; gRNA-BFP; ubi-nlsBFP Recommended for labeling mutant cells by the loss of nuclear BFP Addgene 170513 download Koreman et al., 2021
pAC-U63-QtgRNA2.1-8R For making multiplexed gRNAs with Gal80 co-CRISPR reporter; also serving as the PCR template vector for cloning in pAC-U63-gRNA2.1 U6:3 promoter; SapI adaptor for cloning inserts by Gibson Assembly; gRNA(2.1) scaffold; tRNAGln; gRNA-Gal80; ubi-Gal80 Recommended for labeling mutant cells by Gal4-driven fluorescent markers Addgene 170514 download Koreman et al., 2021
pAC-CR7T-gRNA2.1-nlsBFP For making dual-gRNAs with separate promoters; gRNA(2.1) scaffold CR7T promoter; SapI adaptor for cloning inserts by Gibson Assembly; gRNA(2.1) scaffold; ubi-nlsBFP Highest efficiency in the germline; recommended for germline mutagenesis and HDR-mediated knock-in Addgene 170515 download Koreman et al., 2021
pGC(2.1)-U6.3 PCR template vector to use together with pAC-CR7T-gRNA2.1-nlsBFP gRNAcore(2.1)-pU6.3 Addgene 170516 download Koreman et al., 2021
Mosaic Analysis by gRNA-induced Crossing-over (MAGIC)
pAC-U63-tgRNA-nlsBFP For making nMAGIC gRNA-marker transgene U6:3 promoter; tRNAGly ; SapI adaptor for cloning inserts by Gibson Assembly; gRNA(F+E) scaffold; ubi-nlsBFP Recommended for labeling mosaic clones by the loss of nuclear BFP Addgene 169029 download Allen et al., 2021
pAC-U63-tgRNA-Gal80 For making pMAGIC gRNA-marker transgene U6:3 promoter; tRNAGly ; SapI adaptor for cloning inserts by Gibson Assembly; gRNA(F+E) scaffold; ubi-Gal80 Recommended for labeling mosaic clones by by Gal4-driven fluorescent markers Addgene 169030 download Allen et al., 2021
  1. All gRNA vectors were constructed in the dual-transformation backbone pAC (attB CaSpeR) that contains attB, P-element, and mini-white.

Reference:

Allen, S.E., Koreman, G.T., Sarkar, A., Wang, B., Wolfner, M.F., and Han, C., 2021. Versatile CRISPR/Cas9-mediated mosaic analysis by gRNA-induced crossing-over for unmodified genomes. PLoS Biol 19, e3001061. https://doi.org/10.1371/journal.pbio.3001061.

Han, C., Jan, L.Y., and Jan, Y.N., 2011. Enhancer-driven membrane markers for analysis of nonautonomous mechanisms reveal neuron-glia interactions in Drosophila. Proc Natl Acad Sci U S A 108, 9673-9678. https://doi.org/10.1073/pnas.1106386108.

Han, C., Wang, D., Soba, P., Zhu, S., Lin, X., Jan, L.Y., and Jan, Y.N., 2012. Integrins regulate repulsion-mediated dendritic patterning of drosophila sensory neurons by restricting dendrites in a 2D space. Neuron 73, 64-78. https://doi.org/10.1016/j.neuron.2011.10.036.

Han, C., Song, Y., Xiao, H., Wang, D., Franc, N.C., Jan, L.Y., and Jan, Y.N., 2014. Epidermal cells are the primary phagocytes in the fragmentation and clearance of degenerating dendrites in Drosophila. Neuron 81, 544-560. https://doi.org/10.1016/j.neuron.2013.11.021.

Koreman, G.T., Xu, Y., Hu, Q., Zhang, Z., Allen, S.E., Wolfner, M.F., Wang, B., and Han, C., 2021. Upgraded CRISPR/Cas9 tools for tissue-specific mutagenesis in Drosophila. Proc Natl Acad Sci U S A 118. https://doi.org/10.1073/pnas.2014255118.

Poe, A.R., Tang, L., Wang, B., Li, Y., Sapar, M.L., and Han, C., 2017. Dendritic space-filling requires a neuronal type-specific extracellular permissive signal in Drosophila. Proc Natl Acad Sci U S A 114, E8062-E8071. https://doi.org/10.1073/pnas.1707467114.

Poe, A.R., Wang, B., Sapar, M.L., Ji, H., Li, K., Onabajo, T., Fazliyeva, R., Gibbs, M., Qiu, Y., Hu, Y., et al., 2019. Robust CRISPR/Cas9-Mediated Tissue-Specific Mutagenesis Reveals Gene Redundancy and Perdurance in Drosophila. Genetics 211, 459-472. https://doi.org/10.1534/genetics.118.301736.

Sapar, M.L., Ji, H., Wang, B., Poe, A.R., Dubey, K., Ren, X., Ni, J.Q., and Han, C., 2018. Phosphatidylserine Externalization Results from and Causes Neurite Degeneration in Drosophila. Cell Rep 24, 2273-2286. https://doi.org/10.1016/j.celrep.2018.07.095.